Antiferromagnetic Complexes of Cobalt(II) and Nickel(II) with 2-Substituted Pyridine N-Oxides

A. E. LANDERS and D. J. PHILLIPS

School of Chemistry, University of New South Wales, P.O. Box 1, Kensington, N.S.W. 2033, Australia Received August 13, 1977

There appears to be a gap in the coordination chemistry of pyridine N-oxide (I, po) in that, whilst very many N-oxide-bridged antiferromagnetic complexes of copper(II) are known [1, 2], there are very few reports of such antiferromagnetic complexes of other transition metals with pyridine N-oxide. We have found that it is possible to readily obtain pyridine N-oxide-bridged antiferromagnetic complexes of nickel(II) and cobalt(II), by using ligands based on pyridine N-oxide with donor groupings in the 2-position.

Results and Discussion

In the table we show the magnetic data for a series of nickel(II) and cobalt(II) complexes with the ligands Hapo (II), pxo (III), poph (IV) and poqh (V).

The complexes in group I in the table are all markedly antiferromagnetic and are, therefore, considered to be N-oxide-bridged, since the alternative anion-bridging does not appear to produce marked magnetic interaction in complexes [3-5] of the type $M(ligand)_nX_2$ (M = Co, Ni; X = Cl, Br, NCS). The

complexes have large Weiss θ values in the range 46–117 K.

With the nickel complexes, the μ_{eff} values are reduced, at 90 K, to the range 2.1–2.6 B.M., below the usual values of 2.8–3.2 B.M. which are found when magnetic interaction is absent [3, 4]. The magnetic data have been compared with those expected [6] for binuclear nickel complexes, and close agreement was found, using the values of g and J which are listed in the table. The nickel complexes are likely, therefore, to have binuclear structures. For the cobalt (II) complexes, the μ_{eff} values also decrease markedly with decreasing temperature, and the drop of 0.7–1.4 B.M., which occurs, contrasts with the change of *ca*. 0.2–0.6 B.M. found when interaction is absent [3, 4].

As a comparison, we list, in group II of the table, some complexes of these N-oxide ligands in which there is no detectable magnetic interaction and where N-oxide-bridging is probably, therefore, absent. The maximum decrease in μ_{eff} is 0.2 B.M., compared

TABLE. Magnetic Data for Complexes of Pyridine N-oxide and Its 2-Substituted Derivatives.

Group I						Group II			
Complex	μ _{eff} (B.M.)					Complex	μ _{eff} (B.M.)		
	298 K	89 K	θ (K)	g ^b	J (cm ⁻¹) ^b		298 K	89 K	θ (K) ^a
$Ni(Hapo)_2Br_2$	2.97	2.15	-115 ^c	2.25	-28	Ni(Hapo)Cl ₂ ·H ₂ O	3.11	2.91	-17
Ni(pxo)Cl ₂ ·CH ₃ OH	2.93	2.28	-67 ^c	2.15	-19	Ni(pxo) ₂ Br ₂	3.16	3.10	-5
Ni(poph)(NCS) ₂	2.93	2.21	84 [°]	2.19	24	$Ni(poph)(NO_3)_2 \cdot 2H_2O$	3.32	3.27	$^{-2}$
Ni(poqh)(NCS) ₂ ·½H ₂ O	3.12	2.61	-64	2.26	16	$Ni(poqh)(NO_3)_2 \cdot \frac{1}{2}H_2O$	3.28	3.18	-8
Co(Hapo) ₂ Br ₂ ·C ₂ H ₅ OH	4.67	3.28	~90 [°]			Co(Hapo)Cl ₂ ·C ₂ H ₅ OH	4.84	4.58	-14
Co(pxo)Cl ₂ ·CH ₃ OH	4.59	3.89	-46 ^c			$Co(pxo)_2Br_2$	4.77	4.61	-3
						$Ni(po)Cl_2 \cdot H_2O$	3.17	3.10	3
						$Ni(po)Br_2 \cdot H_2O$	3.14	2.95	-18
						$C_0(p_0)C_1_2 \cdot H_2O$	4.76	4.55	-4

^aThe Curie-Weiss law is taken as $\chi_{A}^{-1} \propto (T-1)$. the experimental magnetic data and those calculated for a binuclear arrangement of nickel(II) ions. against temperature deviated from linearity at lower temperatures. to the decrease of 0.5-1.4 B.M. found for the N-oxide-bridged, group I, complexes.

In group II we also list some new magnetic data on the pyridine N-oxide (po) complexes M(po)(halide)₂- H_2O (M = Ni, Co). The reflectance electronic spectra of the po complexes show that they are six-coordinate [7], and so either N-oxide or halogen-bridging must be present. As can be seen in the table, the complexes exhibit no magnetic interaction and so halogenbridging is considered likely. A similar halogenbridged structure was proposed for Ni(po)Cl₂ by Karayannis et al. [8], on the basis of far-infrared spectra and magnetic data. Similar halogen-bridging has been proposed for 1:1 complexes of cobalt(II) halides with pyridine N-oxides (L); the analogous 2:1 complexes, CoL_2 (halide)₂, appear to be monomeric and tetrahedral [9]. The complex $Ni(po)_2Br_2$ appears to be the only antiferromagnetic N-oxide-bridged complex of nickel(II) or cobalt(II) which has been reported with pyridine N-oxides [10]. This contrasts with the wide range of analogous 1:1 and 2:1 complexes with copper(II) which are N-oxide bridged and antiferromagnetic [1, 2].

This reluctance by pyridine N-oxide to readily produce N-oxide-bridged complexes with metals other than copper(II) is not shown by the N-oxides of more complicated amines such as diazines. The latter ligands have recently been found to yield N-oxidebridged antiferromagnetic complexes with a range of transition metal ions [11].

Experimental

The ligand Hapo was prepared by the method of Delarge and Thunus [12]. The remaining ligands

were prepared by condensation of relevant N-oxide compounds [13, 14] with appropriate amines. Complexes had satisfactory analyses and were generally obtained by reaction in alcoholic media in the presence of 2,2-dimethyoxypropane. Physical measurements were as previously described [15].

References

- 1 W. H. Watson, Inorg. Chem., 8, 1879 (1969).
- 2 N. M. Karayannis, L. L. Pytlewski and C. M. Mikulski, Coord. Chem. Rev., 11, 93 (1973).
- 3 Landolt-Bornstein, New Series Group II, Volume 2, "Magnetic Properties of Coordination and Organometallic Transition Metal Compounds", by E. König, Springer, Berlin (1966).
- 4 B. N. Figgis and J. Lewis, Prog. Inorg. Chem., 6, 37 (1964).
- 5 D. M. Duggan and D. N. Hendrickson, *Inorg. Chem.*, 13, 2929 (1974).
- 6 A. Earnshaw, "Introduction to Magnetochemistry", Academic Press, London (1968).
- 7 A. E. Landers and D. J. Phillips, unpublished observations.
- 8 N. M. Karayannis, C. M. Paleos, L. L. Pytlewski and M. M. Labes, *Inorg. Chem.*, 8, 2559 (1969).
- 9 D. H. Brown, D. Kenyon and D. W. A. Sharp, J. Chem. Soc. A, 1474 (1969).
- 10 S. V. Nipankar, V. R. Marathe and C. R. Kanekar, *Indian J. Chem.*, 10, 649 (1972).
- 11 N. M. Karayannis, A. N. Speca, D. E. Chasan and L. L. Pytlewski, Coord. Chem. Rev., 20, 37 (1976).
- 12 J. Delarge and L. Thunus, Farmaco Ed. Sc., 21, 846 (1966).
- 13 K. Winterfeld and W. Zickel, Arch. Pharm., 302, 900 (1969).
- 14 D. Jerchel, J. Heider and H. Wagner, Ann., 613, 166 (1958).
- 15 M. Akbar Ali, S. E. Livingstone and D. J. Phillips, Inorg. Chim. Acta, 6, 552 (1972).